A novel sialic acid utilization and uptake system in the periodontal pathogen Tannerella forsythia.
نویسندگان
چکیده
Tannerella forsythia is a key contributor to periodontitis, but little is known of its virulence mechanisms. In this study we have investigated the role of sialic acid in biofilm growth of this periodontal pathogen. Our data show that biofilm growth of T. forsythia is stimulated by sialic acid, glycolyl sialic acid, and sialyllactose, all three of which are common sugar moieties on a range of important host glycoproteins. We have also established that growth on sialyllactose is dependent on the sialidase of T. forsythia since the sialidase inhibitor oseltamivir suppresses growth on sialyllactose. The genome of T. forsythia contains a sialic acid utilization locus, which also encodes a putative inner membrane sialic acid permease (NanT), and we have shown this is functional when it is expressed in Escherichia coli. This genomic locus also contains a putatively novel TonB-dependent outer membrane sialic acid transport system (TF0033-TF0034). In complementation studies using an Escherichia coli strain devoid of its outer membrane sialic acid transporters, the cloning and expression of the TF0033-TF0034 genes enabled an E. coli nanR nanC ompR strain to utilize sialic acid as the sole carbon and energy source. We have thus identified a novel sialic acid uptake system that couples an inner membrane permease with a TonB-dependent outer membrane transporter, and we propose to rename these novel sialic acid uptake genes nanO and nanU, respectively. Taken together, these data indicate that sialic acid is a key growth factor for this little-characterized oral pathogen and may be key to its physiology in vivo.
منابع مشابه
Role of sialidase in glycoprotein utilization by Tannerella forsythia
The major bacterial pathogens associated with periodontitis include Tannerella forsythia. We previously discovered that sialic acid stimulates biofilm growth of T. forsythia, and that sialidase activity is key to utilization of sialoconjugate sugars and is involved in host-pathogen interactions in vitro. The aim of this work was to assess the influence of the NanH sialidase on initial biofilm a...
متن کاملStructural and functional characterization of NanU, a novel high-affinity sialic acid-inducible binding protein of oral and gut-dwelling Bacteroidetes species
Many human-dwelling bacteria acquire sialic acid for growth or surface display. We identified previously a sialic acid utilization operon in Tannerella forsythia that includes a novel outer membrane sialic acid-transport system (NanOU), where NanO (neuraminate outer membrane permease) is a putative TonB-dependent receptor and NanU (extracellular neuraminate uptake protein) is a predicted SusD f...
متن کاملUncultivated Tannerella BU045 and BU063 are slim segmented filamentous rods of high prevalence but low abundance in inflammatory disease-associated dental plaques.
Uncultivated clones BU045 and BU063 and Tannerella forsythia, a 'consensus periodontal pathogen', are the closest known relatives within the genus Tannerella. They have been described to inhabit different ecological niches of the human oral cavity. In this study, fluorescent in situ hybridization (FISH) and immunofluorescence were combined to investigate the prevalence and abundance of BU045 an...
متن کاملLack of a surface layer in Tannerella forsythia mutants deficient in the type IX secretion system
Tannerella forsythia, a Gram-negative anaerobic bacterium, is an important pathogen in periodontal disease. This bacterium possesses genes encoding all known components of the type IX secretion system (T9SS). T. forsythia mutants deficient in genes orthologous to the T9SS-encoding genes porK, porT and sov were constructed. All porK, porT and sov single mutants lacked the surface layer (S-layer)...
متن کاملPrediction of a caspase-like fold in Tannerella forsythia virulence factor PrtH.
Tannerella forsythia is a bacterial pathogen involved in periodontal disease. A cysteine protease PrtH has been characterized in this bacterium as a virulence factor. PrtH has the activity of detaching adherent cells from substratum, and the level of PrtH is associated with periodontal attachment loss. No reports exist on the structure, active site, and catalytic mechanism of PrtH. Using compar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 192 9 شماره
صفحات -
تاریخ انتشار 2010